Von all den Edelsteinen, die in den letzten Dekaten bestrahlt wurden, ist nur noch der Blautopas kommerziell erhältlich.
Foto: K. Sieber, www.makrogalerie.de
Edelsteine und Radioaktivität sind ein sensibles Thema. Um einen weit verbreiteten Irrtum gleich zu Beginn zu klären: Nicht jeder radioaktiv bestrahlte Edelstein wird durch die Behandlung selbst radioaktiv. Nur ganz wenige Edelsteinsorten können bei bestimmten Techniken der Bestrahlung aktiviert werden und radioaktive Strahlung aussenden. Edelsteine, die in nachfolgendem Artikel nicht als aktiv strahlend gekennzeichnet sind, sind auch nicht radioaktiv. Wer gleich wissen möchte, welche Edelsteine das sind, möge gleich zum Absatz "Fazit" scrollen.
Die Vielzahl von natürlichen, radiaktiven MINERALIEN und deren Gefahrenpotential ist nicht Thema dieses Artikels. Hier geht es speziell um künstlich bestrahlte EDELSTEINE.
Historische Entwicklung
Schon Anfang des 20. Jahrhunderts hatte man durch die systematische Erforschung der Farbursachen bei Mineralien herausgefunden, daß manche Varietäten ihre intensiven Farben dem Einfluss von natürlicher Strahlung verdanken. Rauchquarz und Amethyst, violetter Fluorit, blaues Salz, gelbe Saphire und grüne Diamanten, sie alle erhalten ihre Farbe durch die Einwirkung von natürlicher Radioaktivität. Die Strahlungsquelle kann das umgebende Gestein, in selten Fällen auch Höhenstrahlung sein. Erste Experimente, diese Prozesse künstlich nachzuahmen waren vielversprechend.
Mitte des Jahrhunderts wurden künstlich bestrahlte Rauchquarze hergestellt, die jedoch noch keine kommerzielle Bedeutung erlangten. Erst mit der Entdeckung, dass farbloser Topas durch Bestrahlung und anschließendem Erhitzen intensiv blaue Farbtöne hervorbringen kann, wurde ein kommerzieller Durchbruch erzielt. Inzwischen werden pro Jahr mehrere Tonnen Topas bestrahlt und verarbeitet.
Strahlungsarten und ihre Auswirkungen auf den betroffenen Edelstein
Die Strahlungsarten, denen Edelsteine ausgesetzt werden, reichen von energiereicher elektromagnetischer Strahlung (Gamma- oder Röntgen-Strahlung), Partikelstrahlung (Beta-Strahlung) bis hin zum Beschuss mit freien Neutronen und Protonen. Einzig und Allein bei dieser letztgenannten Bestrahlungstechnik können als Nebenprodukt Elemente entstehen, die zu einer merklichen Radioaktivität des Steines führen. Diese Kollateralstrahlung kann z.B. bei grünen und schwarzen Diamanten auftreten, wenn einschlussreiches Ausgangsmaterial verwendet wurde oder bei Blautopas, der mit Neutronen beschossen wurde (und nur dann). Solcher mit Neutronenstrahlung behandelter Topas (typischerweise in der Farbe "London Blue") kann noch mehrere Jahre lang eine meßbare Radioaktivität aufweisen. Deshalb muss er erst einmal in Quarantäne, bis seine Radioaktivität auf die gesetzlich festgelegten Grenzwerte (siehe unten) abgeklungen ist. Mit Elektronen betrahlter Blautopas zeigt hellere Farbtöne (Handelsnamen: "Electric Blue") und ist nicht radioktiv.
Strahlenbelastung und Grenzwerte
Radioaktive Edelsteine und solche, die durch künstliche Bestrahlung aktiviert wurden, dürfen nur dann an Personen weitergegeben werden, wenn ihre spezifische Aktivität 100 Bq pro Gramm nicht überschreitet.
Der Umgang mit radioaktiven Edelsteinen (Lagerung, Be- und Verarbeitung) ist genehmigungspflichtig, wenn die spezifische Aktivität des Steins 0,5 Bq/gr überschreitet. |
Künstliche Farbveränderung durch Bestrahlen
In der folgenden Tabelle sind diejenigen Edelsteine aufgelistet, bei denen eine Farbveränderung durch künstliche Bestrahlung möglich ist. Bei einigen Steinarten, kann die Bestrahlungsfarbe im Sonnenlicht ausbleichen. Solche instabilen Farbvarietäten sind durch ein Sternchen (*) direkt hinter der jeweiligen Farbe gekennzeichnet. Edelsteine, die durch die Bestrahlung selbst aktiv Strahlung aussenden können, sind durch ein [R] hinter der jeweiligen Farbe gekennzeichnet. Wo kein [R] steht, ist in den letzten 50 Jahren bis heute auch niemals eine messbare Radioaktivät bekannt geworden.
Edelstein | Farbe vor der Bestrahlung | Farbe nach der Bestrahlung | potentielle Radioaktivität von bestrahlten Steinen |
Beryll |
blass grün bis gelb |
grün bis goldgelb |
nein, beziehungsweise nicht im Handel |
blass rosa | orangerot | ||
farblos |
dunkelblau* [R]
|
* Farbe ist instabil (verblasst im Sonnenlicht) | |
Chrysoberyll-Katzenauge | blass grün |
dunkelbraun |
nein, beziehungsweise nicht im Handel |
Diamant | farblos, blassfarben | blau, braun, schwarz [R], grün [R] | nein, beziehungsweise nicht im Handel |
gelblich, bräunlich | gelb, pink, rot (zusätzlich erhitzt) | nein | |
Fluorit | farblos | grün, blau, violett | nein |
Perlen |
weiß |
nein | |
Quarz |
farblos |
rauchgrau, schwarz, violett, hellgrün | nein |
Saphir |
farblos |
gelb* | * Farbe ist instabil (verblasst im Sonnenlicht) |
rosa | orange* | ||
blass gelb |
intensiv gelb | nein, beziehungsweise nicht im Handel | |
blass grün |
grün | ||
Spodumen | rosa | grün*, violett* (selten) | * Farbe ist instabil (verblasst im Sonnenlicht) |
farblos | gelb* (selten) | ||
Topas | farblos |
gelb, orange, grün |
nein |
braun [R], blau [R] | ja ("Swiss Blue", "London Blue") | ||
Turmalin | blass rosa, blassblau, blassgrün | rosa bis rot | nein |
blassgelb blassgrün |
gelb, pfirsichfarbig, orange | ||
dunkel blau, dunkel grün |
lila (purpurrot) |
[R] Radioaktivität möglich
Deklarationsbestimmungen
In jedem Kaufhauskatalog findet man Schmuckstücke mit blauem Topas. Die übliche Bezeichnung lautet dort: "Blautopas, behandelt" und behandelt meint in diesem Falle: bestrahlt und erhitzt.
Wie groß ist das Risiko mit radioaktivem Material konfrontiert zu werden?
Nach Einschätzung des EPI-Labors ist das Risiko äußerst gering. In den letzten 20 Jahren wurden am Institut für Edelstein Prüfung KEINE bestrahlten Edelsteine vorgelegt, die die oben genannten Grenzwerte überschritten.
Wirtschaftliche Erwägungen
Im Vergleich zu anderen Behandlungsmethoden, ist die künstliche Bestrahlung einiger Edelsteine relativ gering verbreitet. Setzt man einmal den Bestrahlungsaufwand in Relation zum erzielbaren Resultat, so wird unter dem Gesichtspunkt der Rentabilität schnell klar, daß nur Edelsteine eine kommerzielle Chance haben, die die folgenden Bedingungen erfüllen:
1. Die Farbe sollte stabil sein. Bei blauem Beryll (Maxixe Typ), grünem Spodumen (Hiddenit) und z.T. gelbem Saphir ist das nicht der Fall.
2. Die Bestrahlungskosten sollten niedriger sein, als der zu erwartende Verkaufserlös. Gamma- oder Röntgenstrahlen sind leicht verfügbar und preisgünstig, eine Bestrahlung mit Neutronen- oder Protonen ist deutlich teurer. Deshalb werden generell nur Steine behandelt, die auch einen entsprechenden Marktwert erzielen.
3. Die natürliche Verfügbarkeit sollte gering und/oder die Nachfrage groß sein.
Fazit
Die oben genannten Bedingungen erfüllen im wesentlichen nur vier Minerale: blauer Topas, farbiger Diamant, roter Turmalin und Rauchquarz. Diese Vier werden real zum Verkauf angeboten. Alle anderen in diesem Artikel genannten Edelsteinsorten sind nur extrem selten anzutreffen. Schwarzer und grüner Diamant sind in der Vergangenheit hin und wider mit einer messbaren Radioaktivität in den Handel gelangt. Die derzeit vermehrt angebotenen Ketten und Armbänder aus schwarzen Diamantsplttern oder Rohdiamanten sind jedoch durchweg natürliche (unbestrahlte) Diamanten, von denen keine Gefahr ausgeht. Bleibt einzig und allein noch der blaue Topas in der Farbe "London Blue", der möglicherweise Radioaktiv sein kann. "London Blue" ist ein dunkler, leicht ins Graue gehender Farbton. Nicht betroffen sind die allgegenwärtigen hellblauen, neonblauen, strahlend hellen Farbtöne. Bei diesen hellfarbigen Blautopasen wurde noch nie Radioaktivität gemessen.
Natürliche radioaktive Schmucksteine
An dieser Stelle ist vor allem grüner Zirkon zu nennen, der von Natur aus radioaktiv sein kann. Manchmal kann er so viele radioaktive Einschlüsse enthalten, dass seine Kristallstruktur zerstört wird (metamikt). In Apatit und Titanit ist die natürliche Radioaktivität meist geringer als die natürliche Hintergrundstrahlung. Heliodor von der Mine Rössing in Namibia, Ekanit und Monazit sind nur für Sammler interessant.
Mineral | Farbe | Natürliche Strahlenquelle |
Apatit (*) | blau, grün, gelb | Uran (U), Ce, Eu, La, Th und Y |
Ekanit | grün, hellbraun | Thorium (Th) |
Eudialyt (*) |
rosa bis rotviolett | Thorium (Th) |
Heliodor (Lagerstätte Rössing, Namibia) | gelbgrün | Uran (U) |
Monazit | gelbbraun | Thorium (Th) |
Titanit (*) | gelb bis braun, grün bis schwarz | Uran (U), Ce, Eu, La und Th |
Zirkon (metamikt) | grün | Uran (U), Thorium (Th) |
(*) Radioaktivität meist nicht messbar
Autor: Dipl.-Min. B. Bruder
© INSTITUT FÜR EDELSTEIN PRÜFUNG (EPI)
brauner zirkon radioaktiv?
Ist der braune Zirkon wenn man ihn als Edelstein längere Zeit trägt am Tag gesundheitsschädlich wegen radioaktivität?
Zirkon
Brauner Zirkon stellt in der Regel keine Gesundheitsgefahr dar. Deshalb wird in obigem Artikel grüner Zirkon als potentiell strahlend genannt, brauner jedoch nicht.